Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2104.10195v1

ABSTRACT

Federated learning (FL) enables collaborative model training while preserving each participant's privacy, which is particularly beneficial to the medical field. FedAvg is a standard algorithm that uses fixed weights, often originating from the dataset sizes at each client, to aggregate the distributed learned models on a server during the FL process. However, non-identical data distribution across clients, known as the non-i.i.d problem in FL, could make this assumption for setting fixed aggregation weights sub-optimal. In this work, we design a new data-driven approach, namely Auto-FedAvg, where aggregation weights are dynamically adjusted, depending on data distributions across data silos and the current training progress of the models. We disentangle the parameter set into two parts, local model parameters and global aggregation parameters, and update them iteratively with a communication-efficient algorithm. We first show the validity of our approach by outperforming state-of-the-art FL methods for image recognition on a heterogeneous data split of CIFAR-10. Furthermore, we demonstrate our algorithm's effectiveness on two multi-institutional medical image analysis tasks, i.e., COVID-19 lesion segmentation in chest CT and pancreas segmentation in abdominal CT.


Subject(s)
COVID-19
2.
Mona Flores; Ittai Dayan; Holger Roth; Aoxiao Zhong; Ahmed Harouni; Amilcare Gentili; Anas Abidin; Andrew Liu; Anthony Costa; Bradford Wood; Chien-Sung Tsai; Chih-Hung Wang; Chun-Nan Hsu; CK Lee; Colleen Ruan; Daguang Xu; Dufan Wu; Eddie Huang; Felipe Kitamura; Griffin Lacey; Gustavo César de Antônio Corradi; Hao-Hsin Shin; Hirofumi Obinata; Hui Ren; Jason Crane; Jesse Tetreault; Jiahui Guan; John Garrett; Jung Gil Park; Keith Dreyer; Krishna Juluru; Kristopher Kersten; Marcio Aloisio Bezerra Cavalcanti Rockenbach; Marius Linguraru; Masoom Haider; Meena AbdelMaseeh; Nicola Rieke; Pablo Damasceno; Pedro Mario Cruz e Silva; Pochuan Wang; Sheng Xu; Shuichi Kawano; Sira Sriswasdi; Soo Young Park; Thomas Grist; Varun Buch; Watsamon Jantarabenjakul; Weichung Wang; Won Young Tak; Xiang Li; Xihong Lin; Fred Kwon; Fiona Gilbert; Josh Kaggie; Quanzheng Li; Abood Quraini; Andrew Feng; Andrew Priest; Baris Turkbey; Benjamin Glicksberg; Bernardo Bizzo; Byung Seok Kim; Carlos Tor-Diez; Chia-Cheng Lee; Chia-Jung Hsu; Chin Lin; Chiu-Ling Lai; Christopher Hess; Colin Compas; Deepi Bhatia; Eric Oermann; Evan Leibovitz; Hisashi Sasaki; Hitoshi Mori; Isaac Yang; Jae Ho Sohn; Krishna Nand Keshava Murthy; Li-Chen Fu; Matheus Ribeiro Furtado de Mendonça; Mike Fralick; Min Kyu Kang; Mohammad Adil; Natalie Gangai; Peerapon Vateekul; Pierre Elnajjar; Sarah Hickman; Sharmila Majumdar; Shelley McLeod; Sheridan Reed; Stefan Graf; Stephanie Harmon; Tatsuya Kodama; Thanyawee Puthanakit; Tony Mazzulli; Vitor de Lima Lavor; Yothin Rakvongthai; Yu Rim Lee; Yuhong Wen.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-126892.v1

ABSTRACT

‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the “EXAM” (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration without data exchange, resulting in a model that generalised across heterogeneous, unharmonized datasets. This provided the broader healthcare community with a validated model to respond to COVID-19 challenges, as well as set the stage for broader use of FL in healthcare.


Subject(s)
COVID-19 , Infections
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2011.11750v1

ABSTRACT

The recent outbreak of COVID-19 has led to urgent needs for reliable diagnosis and management of SARS-CoV-2 infection. As a complimentary tool, chest CT has been shown to be able to reveal visual patterns characteristic for COVID-19, which has definite value at several stages during the disease course. To facilitate CT analysis, recent efforts have focused on computer-aided characterization and diagnosis, which has shown promising results. However, domain shift of data across clinical data centers poses a serious challenge when deploying learning-based models. In this work, we attempt to find a solution for this challenge via federated and semi-supervised learning. A multi-national database consisting of 1704 scans from three countries is adopted to study the performance gap, when training a model with one dataset and applying it to another. Expert radiologists manually delineated 945 scans for COVID-19 findings. In handling the variability in both the data and annotations, a novel federated semi-supervised learning technique is proposed to fully utilize all available data (with or without annotations). Federated learning avoids the need for sensitive data-sharing, which makes it favorable for institutions and nations with strict regulatory policy on data privacy. Moreover, semi-supervision potentially reduces the annotation burden under a distributed setting. The proposed framework is shown to be effective compared to fully supervised scenarios with conventional data sharing instead of model weight sharing.


Subject(s)
COVID-19
4.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-33150.v1

ABSTRACT

This study investigated the utility of artificial intelligence in predicting disease progression. We analysed 194 patients with COVID-19 confirmed by reverse transcription polymerase chain reaction. Among them, 31 patients had oxygen therapy administered after admission. To assess the utility of artificial intelligence in the prediction of disease progression, we used three machine learning models employing clinical features (patient’s background, laboratory data, and symptoms), one deep learning model employing computed tomography (CT) images, and one multimodal deep learning model employing a combination of clinical features and CT images. We also evaluated the predictive values of these models and analysed the important features required to predict worsening in cases of COVID-19. The multimodal deep learning model had the highest accuracy. The CT image was an important feature of multimodal deep learning model. The area under the curve of all machine learning models employing clinical features and the deep learning model employing CT images exceeded 90%, and sensitivity of these models exceeded 95%. C-reactive protein and lactate dehydrogenase were important features of machine learning models. Our machine learning model, while slightly less accurate than the multimodal model, still provides a valuable medical triage tool for patients in the early stages of COVID-19.


Subject(s)
COVID-19 , Learning Disabilities
SELECTION OF CITATIONS
SEARCH DETAIL